Cargando…
Predicting RNA splicing from DNA sequence using Pangolin
Recent progress in deep learning has greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods for predicting RNA splicing on a variety of pred...
Autores principales: | Zeng, Tony, Li, Yang I |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022248/ https://www.ncbi.nlm.nih.gov/pubmed/35449021 http://dx.doi.org/10.1186/s13059-022-02664-4 |
Ejemplares similares
-
RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing
por: Cereda, Matteo, et al.
Publicado: (2014) -
Degradation of Temminck's pangolin (Smutsia temminckii) scales with a keratinase for extraction of reproductive steroid hormones
por: Blecher, Arantxa S., et al.
Publicado: (2021) -
SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data
por: Rogers, Mark F, et al.
Publicado: (2012) -
Global and unbiased detection of splice junctions from RNA-seq data
por: Ameur, Adam, et al.
Publicado: (2010) -
A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection
por: Hoffmann, Steve, et al.
Publicado: (2014)