Cargando…

A novel model of traumatic femoral head necrosis in rats developed by microsurgical technique

BACKGROUND: Clinical angiography and vascular microperfusion confirmed that the femoral head retains blood supply after a collum femur fracture. However, no animal model accurately mimics this clinical situation. This study was performed to establish a rat model with retained viability of the femora...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Yongxiang, Qiu, Xing, Liu, Gang, Wang, Yunqing, Zhang, Yazhong, Li, Wenbo, Zhu, Ziqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022312/
https://www.ncbi.nlm.nih.gov/pubmed/35449009
http://dx.doi.org/10.1186/s12891-022-05289-7
Descripción
Sumario:BACKGROUND: Clinical angiography and vascular microperfusion confirmed that the femoral head retains blood supply after a collum femur fracture. However, no animal model accurately mimics this clinical situation. This study was performed to establish a rat model with retained viability of the femoral head and partial vasculature deprivation-induced traumatic caput femoris necrosis by surgery. METHODS: Thirty rats were randomly divided into three groups (n = 10 per group): normal group, sham-operated group (Control), and ischemic osteonecrosis group. The femoral head of the normal group of rats underwent a gross anatomy study and microangiography to identify femoral head blood supply. Microsurgical techniques were used to cauterize the anterior-superior retinacular vessels to induce osteonecrosis. Hematoxylin and Eosin (H&E) staining were used for femoral head histologic assessment. Morphologic assessments of the deformity in and trabecular bone parameters of the femoral head epiphysis were performed using micro-CT. RESULTS: The blood supply of the femoral head in rats primarily came from the anterior-superior, inferior, and posterior retinacular arteries. However, anterior-superior retinacular vasculature deprivation alone was sufficient in inducing femoral head osteonecrosis. H&E showed bone cell loss in nuclear staining, disorganized marrow, and trabecular structure. The bone volume (BV) decreased by 13% and 22% in the ischemic group after 5 and 10 weeks, respectively. The mean trabecular thickness (Tb.Th) decreased from 0.09 to 0.06 mm after 10 weeks. The trabecular spacing (Tb.Sp) increased from 0.03 to 0.05 mm after 5 weeks, and the epiphyseal height-to-diameter (H/D) ratio decreased. CONCLUSIONS: We developed an original and highly selective rat model that embodied femoral head traumatic osteonecrosis induced by surgical anterior-superior retinacular vasculature deprivation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-022-05289-7.