Cargando…
TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases From Chest X-Ray Images
Tuberculosis (TB) remains a global health problem, and is the leading cause of death from an infectious disease. A crucial step in the treatment of tuberculosis is screening high risk populations and the early detection of the disease, with chest x-ray (CXR) imaging being the most widely-used imagin...
Autores principales: | Wong, Alexander, Lee, James Ren Hou, Rahmat-Khah, Hadi, Sabri, Ali, Alaref, Amer, Liu, Haiyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022489/ https://www.ncbi.nlm.nih.gov/pubmed/35464996 http://dx.doi.org/10.3389/frai.2022.827299 |
Ejemplares similares
-
Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for Prediction of Pulmonary Fibrosis Progression From Chest CT Images
por: Wong, Alexander, et al.
Publicado: (2021) -
Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models
por: Guo, Ruihua, et al.
Publicado: (2020) -
RatUNet: residual U-Net based on attention mechanism for image denoising
por: Zhang, Huibin, et al.
Publicado: (2022) -
AresB-Net: accurate residual binarized neural networks using shortcut concatenation and shuffled grouped convolution
por: Kim, HyunJin
Publicado: (2021) -
EmotionNet Nano: An Efficient Deep Convolutional Neural Network Design for Real-Time Facial Expression Recognition
por: Lee, James Ren, et al.
Publicado: (2021)