Cargando…

Does Modulation of an Epigenetic Clock Define a Geroprotector?

There is growing interest in the development of interventions (e.g., drugs, diets, dietary supplements, behavioral therapies, etc.) that can enhance health during the aging process, prevent or delay multiple age-related diseases, and ultimately extend lifespan. However, proving that such ‘geroprotec...

Descripción completa

Detalles Bibliográficos
Autores principales: Schork, Nicholas J., Beaulieu-Jones, Brett, Liang, Winnie, Smalley, Susan, Goetz, Laura H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022671/
https://www.ncbi.nlm.nih.gov/pubmed/35466328
http://dx.doi.org/10.20900/agmr20220002
Descripción
Sumario:There is growing interest in the development of interventions (e.g., drugs, diets, dietary supplements, behavioral therapies, etc.) that can enhance health during the aging process, prevent or delay multiple age-related diseases, and ultimately extend lifespan. However, proving that such ‘geroprotectors’ do what they are hypothesized to do in relevant clinical trials is not trivial. We briefly discuss some of the more salient issues surrounding the design and interpretation of clinical trials of geroprotectors, including, importantly, how one defines a geroprotector. We also discuss whether emerging surrogate endpoints, such as epigenetic clocks, should be treated as primary or secondary endpoints in such trials. Simply put, geroprotectors should provide overt health and disease prevention benefits but the time-dependent relationships between epigenetic clocks and health-related phenomena are complex and in need of further scrutiny. Therefore, studies that enable understanding of the relationships between epigenetic clocks and disease processes while simultaneously testing the efficacy of a candidate geroprotector are crucial to move the field forward.