Cargando…
Machine learning prediction of gestational age from metabolic screening markers resistant to ambient temperature transportation: Facilitating use of this technology in low resource settings of South Asia and East Africa
BACKGROUND: Knowledge of gestational age is critical for guiding preterm neonatal care. In the last decade, metabolic gestational dating approaches emerged in response to a global health need; because in most of the developing world, accurate antenatal gestational age estimates are not feasible. The...
Autores principales: | Sazawal, Sunil, Das, Sayan, Ryckman, Kelli K, Khanam, Rasheda, Nisar, Imran, Deb, Saikat, Jasper, Elizabeth A, Rahman, Sayedur, Mehmood, Usma, Dutta, Arup, Chowdhury, Nabidul Haque, Barkat, Amina, Mittal, Harshita, Ahmed, Salahuddin, Khalid, Farah, Ali, Said Mohammed, Raqib, Rubhana, Ilyas, Muhammad, Nizar, Ambreen, Manu, Alexander, Russell, Donna, Yoshida, Sachiyo, Baqui, Abdullah H, Jehan, Fyezah, Dhingra, Usha, Bahl, Rajiv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Society of Global Health
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022771/ https://www.ncbi.nlm.nih.gov/pubmed/35493781 http://dx.doi.org/10.7189/jogh.12.04021 |
Ejemplares similares
-
Machine learning guided postnatal gestational age assessment using new-born screening metabolomic data in South Asia and sub-Saharan Africa
por: Sazawal, Sunil, et al.
Publicado: (2021) -
Using AMANHI-ACT cohorts for external validation of Iowa new-born metabolic profiles based models for postnatal gestational age estimation
por: Sazawal, Sunil, et al.
Publicado: (2021) -
Burden and risk factors for antenatal depression and its effect on preterm birth in South Asia: A population-based cohort study
por: Khanam, Rasheda, et al.
Publicado: (2022) -
Sero-prevalence and risk factors for Severe Acute Respiratory Syndrome Coronavirus 2 infection in women and children in a rural district of Bangladesh: A cohort study
por: Khanam, Rasheda, et al.
Publicado: (2022) -
Cohort Profile: The Alliance for Maternal and Newborn Health Improvement (AMANHI) biobanking study
por: Aftab, Fahad, et al.
Publicado: (2021)