Cargando…
Adaptive plasticity in activity modes and food web stability
Natural ecosystems are comprised of diverse species and their interspecific interactions, in contrast to an ecological theory that predicts the instability of large ecological communities. This apparent gap has led ecologists to explore the mechanisms that allow complex communities to stabilize, eve...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022794/ https://www.ncbi.nlm.nih.gov/pubmed/35446908 http://dx.doi.org/10.1371/journal.pone.0267444 |
Sumario: | Natural ecosystems are comprised of diverse species and their interspecific interactions, in contrast to an ecological theory that predicts the instability of large ecological communities. This apparent gap has led ecologists to explore the mechanisms that allow complex communities to stabilize, even via environmental changes. A standard approach to tackling this complexity-stability problem is starting with a description of the ecological network of species and their interaction links, exemplified by a food web. This traditional description is based on the view that each species is in an active state; that is, each species constantly forages and reproduces. However, in nature, species’ activities can virtually stop when hiding, resting, and diapausing or hibernating, resulting in overlooking another situation where they are inactive. Here I theoretically demonstrate that adaptive phenotypic change in active and inactive modes may be the key to understanding food web dynamics. Accurately switching activity modes can greatly stabilize otherwise unstable communities in which coexistence is impossible, further maintaining strong stabilization, even in a large complex community. I hypothesize that adaptive plastic change in activity modes may play a key role in maintaining ecological communities. |
---|