Cargando…
GAT-FD: An integrated MATLAB toolbox for graph theoretical analysis of task-related functional dynamics
Functional connectivity has been demonstrated to be varying over time during sensory and cognitive processes. Quantitative examinations of such variations can significantly advance our understanding on large-scale functional organizations and their topological dynamics that support normal brain func...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022818/ https://www.ncbi.nlm.nih.gov/pubmed/35446912 http://dx.doi.org/10.1371/journal.pone.0267456 |
Sumario: | Functional connectivity has been demonstrated to be varying over time during sensory and cognitive processes. Quantitative examinations of such variations can significantly advance our understanding on large-scale functional organizations and their topological dynamics that support normal brain functional connectome and can be altered in individuals with brain disorders. However, toolboxes that integrate the complete functions for analyzing task-related brain functional connectivity, functional network topological properties, and their dynamics, are still lacking. The current study has developed a MATLAB toolbox, the Graph Theoretical Analysis of Task-Related Functional Dynamics (GAT-FD), which consists of four modules for sliding-window analyses, temporal mask generation, estimations of network properties and dynamics, and result display, respectively. All the involved functions have been tested and validated using functional magnetic resonance imaging data collected from human subjects when performing a block-designed task. The results demonstrated that the GAT-FD allows for effective and quantitative evaluations of the functional network properties and their dynamics during the task period. As an open-source and user-friendly package, the GAT-FD and its detailed user manual are freely available at https://www.nitrc.org/projects/gat_fd and https://centers.njit.edu/cnnl/gat_fd/. |
---|