Cargando…
Efficient Johnson-S(B) Mixture Model for Segmentation of CT Liver Image
To overcome the problem that the traditional Gaussian mixture model (GMM) cannot well describe the skewness distribution of the gray-level histogram of a liver CT slice, we propose a novel segmentation method for liver CT images by introducing the Johnson-SB mixture model (J(SB)MM). The Johnson-SB m...
Autores principales: | Dun, Yueqin, Kong, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023182/ https://www.ncbi.nlm.nih.gov/pubmed/35463693 http://dx.doi.org/10.1155/2022/5654424 |
Ejemplares similares
-
Adaptive Mesh Expansion Model (AMEM) for Liver Segmentation from CT Image
por: Wang, Xuehu, et al.
Publicado: (2015) -
Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM)
por: Wang, Xuehu, et al.
Publicado: (2017) -
Fully Automatic Segmentation and Three-Dimensional Reconstruction of the Liver in CT Images
por: Wang, ZhenZhou, et al.
Publicado: (2018) -
Dr. B. R. Johnson
Publicado: (1899) -
Liver Segmentation Based on Snakes Model and Improved GrowCut Algorithm in Abdominal CT Image
por: Jiang, Huiyan, et al.
Publicado: (2013)