Cargando…

Analysis of Basketball Technical Movements Based on Human-Computer Interaction with Deep Learning

With the continuous development of computer technology, analysis techniques based on various types of sports data sets are also evolving. One typical representative is image-based motion recognition technology, which enables video action recognition with a certain degree of feasibility. In basketbal...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Xu-Hong, Shi, Hong-Ying, Shang, Wei-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023221/
https://www.ncbi.nlm.nih.gov/pubmed/35463279
http://dx.doi.org/10.1155/2022/4247082
Descripción
Sumario:With the continuous development of computer technology, analysis techniques based on various types of sports data sets are also evolving. One typical representative is image-based motion recognition technology, which enables video action recognition with a certain degree of feasibility. In basketball technical action videos, technical action has obvious characteristics. The athletes in the footage in sports videos are relatively fixed, and the scenes are relatively homogeneous, so technical action analysis of basketball technical action videos has certain advantages. However, there are many challenges in basketball technical action recognition, mainly including the fact that basketball techniques are numerous and complex. To address the above issues, this research proposes a 3D convolutional neural network framework that two different resolution image inputs are performed on the basketball technical action dataset. The experimental results show that the algorithmic process designed in this study is effective for action recognition on the basketball technical action dataset.