Cargando…

Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers

Programmability of DNA sequences enables the formation of synthetic DNA nanostructures and their macromolecular assemblies such as DNA hydrogels. The base pair-level interaction of DNA is a foundational and powerful mechanism to build DNA structures at the nanoscale; however, its temperature sensiti...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chanseok, Do, Sungho, Lee, Jae Young, Kim, Minju, Kim, Sang Moon, Shin, Yongdae, Kim, Do-Nyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023257/
https://www.ncbi.nlm.nih.gov/pubmed/35390157
http://dx.doi.org/10.1093/nar/gkac232
Descripción
Sumario:Programmability of DNA sequences enables the formation of synthetic DNA nanostructures and their macromolecular assemblies such as DNA hydrogels. The base pair-level interaction of DNA is a foundational and powerful mechanism to build DNA structures at the nanoscale; however, its temperature sensitivity and weak interaction force remain a barrier for the facile and scalable assembly of DNA structures toward higher-order structures. We conducted this study to provide an alternative, non-base-pairing approach to connect nanoscale DNA units to yield micrometer-sized gels based on the sequential phase transition of amphiphilic unit structures. Strong electrostatic interactions between DNA nanostructures and polyelectrolyte spermines led to the formation of giant phase-separated aggregates of monomer units. Gelation could be initiated by the addition of NaCl, which weakened the electrostatic DNA-spermine interaction while attractive interactions between cholesterols created stable networks by crosslinking DNA monomers. In contrast to the conventional DNA gelation techniques, our system used solid aggregates as a precursor for DNA microgels. Therefore, in situ gelation could be achieved by depositing aggregates on the desired substrate and subsequently initiating a phase transition. Our approach can expand the utility and functionality of DNA hydrogels by using more complex nucleic acid assemblies as unit structures and combining the technique with top-down microfabrication methods.