Cargando…
GEOM, energy-annotated molecular conformations for property prediction and molecular generation
Machine learning (ML) outperforms traditional approaches in many molecular design tasks. ML models usually predict molecular properties from a 2D chemical graph or a single 3D structure, but neither of these representations accounts for the ensemble of 3D conformers that are accessible to a molecule...
Autores principales: | Axelrod, Simon, Gómez-Bombarelli, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023519/ https://www.ncbi.nlm.nih.gov/pubmed/35449137 http://dx.doi.org/10.1038/s41597-022-01288-4 |
Ejemplares similares
-
PEPCONF, a diverse data set of peptide conformational energies
por: Prasad, Viki Kumar, et al.
Publicado: (2019) -
AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics
por: Wang, Tong, et al.
Publicado: (2023) -
Generating Mesh Representations of VecGeom Solids
por: Topak, Murat
Publicado: (2019) -
Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules
por: Besel, Vitus, et al.
Publicado: (2023) -
67 million natural product-like compound database generated via molecular language processing
por: Tay, Dillon W. P., et al.
Publicado: (2023)