Cargando…
Einstein–Roscoe regression for the slag viscosity prediction problem in steelmaking
In classical machine learning, regressors are trained without attempting to gain insight into the mechanism connecting inputs and outputs. Natural sciences, however, are interested in finding a robust interpretable function for the target phenomenon, that can return predictions even outside of the t...
Autores principales: | Saigo, Hiroto, KC, Dukka B., Saito, Noritaka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023577/ https://www.ncbi.nlm.nih.gov/pubmed/35449168 http://dx.doi.org/10.1038/s41598-022-10278-w |
Ejemplares similares
-
Recycling of ironmaking and steelmaking slags in Japan and China
por: Matsuura, Hiroyuki, et al.
Publicado: (2022) -
Effects of Steelmaking Slag and Moisture on Electrical Properties of Concrete
por: Hong, Se-Hee, et al.
Publicado: (2020) -
The volatilization behaviour of typical fluorine-containing slag in steelmaking
por: Zhao, Zhongyu, et al.
Publicado: (2020) -
Investigation of Biofilms Formed on Steelmaking Slags in Marine Environments for Water Depuration
por: Ogawa, Akiko, et al.
Publicado: (2020) -
pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model
por: Pratyush, Pawel, et al.
Publicado: (2023)