Cargando…
Hierarchical confounder discovery in the experiment-machine learning cycle
The promise of machine learning (ML) to extract insights from high-dimensional datasets is tempered by confounding variables. It behooves scientists to determine if a model has extracted the desired information or instead fallen prey to bias. Due to features of natural phenomena and experimental des...
Autores principales: | Rogozhnikov, Alex, Ramkumar, Pavan, Bedi, Rishi, Kato, Saul, Escola, G. Sean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024009/ https://www.ncbi.nlm.nih.gov/pubmed/35465234 http://dx.doi.org/10.1016/j.patter.2022.100451 |
Ejemplares similares
-
Data science, human intelligence, and therapeutics discovery: An interview with Sean Escola, Saul Kato, and Pavan Ramkumar
por: Ramkumar, Pavan, et al.
Publicado: (2022) -
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Statistical quantification of confounding bias in machine learning models
por: Spisak, Tamas
Publicado: (2022) -
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023) -
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023)