Cargando…
GANterfactual—Counterfactual Explanations for Medical Non-experts Using Generative Adversarial Learning
With the ongoing rise of machine learning, the need for methods for explaining decisions made by artificial intelligence systems is becoming a more and more important topic. Especially for image classification tasks, many state-of-the-art tools to explain such classifiers rely on visual highlighting...
Autores principales: | Mertes, Silvan, Huber, Tobias, Weitz, Katharina, Heimerl, Alexander, André, Elisabeth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024220/ https://www.ncbi.nlm.nih.gov/pubmed/35464995 http://dx.doi.org/10.3389/frai.2022.825565 |
Ejemplares similares
-
Counterfactual learning in enhancing resilience in autonomous agent systems
por: Samarasinghe, Dilini
Publicado: (2023) -
The Generative Adversarial Brain
por: Gershman, Samuel J.
Publicado: (2019) -
Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks
por: Beguš, Gašper
Publicado: (2020) -
Adversarially Robust Learning via Entropic Regularization
por: Jagatap, Gauri, et al.
Publicado: (2022) -
Generating adversarial examples without specifying a target model
por: Yang, Gaoming, et al.
Publicado: (2021)