Cargando…
Effect of Membrane Orientation and Concentration of Draw Solution on the Behavior of Commercial Osmotic Membrane in a Novel Dynamic Forward Osmosis Tests
Dynamic performance tests, commonly used to characterize gas separation membranes, are not utilized to characterize osmotic membranes. This paper demonstrates the application of a novel dynamic forward osmosis test to characterize a commercial osmotic membrane. In particular, we report the effect of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024543/ https://www.ncbi.nlm.nih.gov/pubmed/35448355 http://dx.doi.org/10.3390/membranes12040385 |
Sumario: | Dynamic performance tests, commonly used to characterize gas separation membranes, are not utilized to characterize osmotic membranes. This paper demonstrates the application of a novel dynamic forward osmosis test to characterize a commercial osmotic membrane. In particular, we report the effect of membrane orientation (active layer draw solution (AL-DS) vs. active layer feed solution (AL-FS)) and the draw solution concentration on the membrane’s transient and steady-state behaviors. A step-change in the draw solution concentration initiated the dynamic test, and the mass and concentration of the feed and draw solutions were recorded in real-time. The progress of the experiments in two different membrane orientations is markedly different; also, the draw solution concertation has a different effect in the orientations. A positive salt time lag is observed in both orientations; however, the salt time lag in the AL-FS orientation (4.3–4.6 min) is practically independent of the draw solution concentration, but it increases from 7 to 20 min with the draw solution concertation in the AL-DS orientation. A negative water time lag, ranging from −11 to −20 min depending on the draw solution concentration, is observed in the AL-DS orientation. Still, in the AL-FS orientation, the water flux is practically constant from the experiment’s onset, leading to a negligible water time lag (<1 min). The new method demonstrated in this paper can be a potent tool for characterizing osmotic membranes. |
---|