Cargando…
Machine Learning-Based Retention Time Prediction of Trimethylsilyl Derivatives of Metabolites
In gas chromatography–mass spectrometry-based untargeted metabolomics, metabolites are identified by comparing mass spectra and chromatographic retention time with reference databases or standard materials. In that sense, machine learning has been used to predict the retention time of metabolites la...
Autores principales: | de Cripan, Sara M., Cereto-Massagué, Adrià, Herrero, Pol, Barcaru, Andrei, Canela, Núria, Domingo-Almenara, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024754/ https://www.ncbi.nlm.nih.gov/pubmed/35453629 http://dx.doi.org/10.3390/biomedicines10040879 |
Ejemplares similares
-
Gut Microbiome and Small RNA Integrative-Omic Perspective of Meconium and Milk-FED Infant Stool Samples
por: Kazakova, Polina, et al.
Publicado: (2023) -
Multiomic Approach to Analyze Infant Gut Microbiota: Experimental and Analytical Method Optimization
por: Torrell, Helena, et al.
Publicado: (2021) -
Metabolites Secreted by Bovine Embryos In Vitro Predict Pregnancies That the Recipient Plasma Metabolome Cannot, and Vice Versa
por: Gomez, Enrique, et al.
Publicado: (2021) -
DecoyFinder, a tool for finding decoy molecules
por: Adrià, Cereto Massagué, et al.
Publicado: (2012) -
The METLIN small molecule dataset for machine learning-based retention time prediction
por: Domingo-Almenara, Xavier, et al.
Publicado: (2019)