Cargando…
Predicting Adverse Drug Reactions from Social Media Posts: Data Balance, Feature Selection and Deep Learning
Social forums offer a lot of new channels for collecting patients’ opinions to construct predictive models of adverse drug reactions (ADRs) for post-marketing surveillance. However, due to the characteristics of social posts, there are many challenges still to be solved when deriving such models, ma...
Autores principales: | Huang, Jhih-Yuan, Lee, Wei-Po, Lee, King-Der |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024774/ https://www.ncbi.nlm.nih.gov/pubmed/35455795 http://dx.doi.org/10.3390/healthcare10040618 |
Ejemplares similares
-
Adverse Drug Reaction Detection in Social Media by Deep
Learning Methods
por: Rezaei, Zahra, et al.
Publicado: (2020) -
Debunking multi-lingual social media posts using deep learning
por: Kotiyal, Bina, et al.
Publicado: (2023) -
Combining Social Media and FDA Adverse Event Reporting System to Detect Adverse Drug Reactions
por: Li, Ying, et al.
Publicado: (2020) -
SEED: Symptom Extraction from English Social Media Posts using Deep Learning and Transfer Learning
por: Magge, Arjun, et al.
Publicado: (2022) -
Adverse Drug Reaction Identification and Extraction in Social Media: A Scoping Review
por: Lardon, Jérémy, et al.
Publicado: (2015)