Cargando…
Role of Homologous Recombination Repair (HRR) Genes in Uterine Leiomyosarcomas: A Retrospective Analysis
SIMPLE SUMMARY: A more in-depth molecular characterization of uterine leiomyosarcomas (uLMS), a rare disease characterized with dismal prognosis, could provide data suitable for the identification of potential target-based drugs. We aimed to define frequencies of gene alterations in uLMS, especially...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024785/ https://www.ncbi.nlm.nih.gov/pubmed/35454841 http://dx.doi.org/10.3390/cancers14081934 |
Sumario: | SIMPLE SUMMARY: A more in-depth molecular characterization of uterine leiomyosarcomas (uLMS), a rare disease characterized with dismal prognosis, could provide data suitable for the identification of potential target-based drugs. We aimed to define frequencies of gene alterations in uLMS, especially regarding the somatic mutations of BRCA and HRR gene alterations, and identify the impact of these molecular alterations on clinical outcomes. This retrospective analysis of the mutational profile of uLMS showed that the most frequent alterations involved the TP53 gene, and that patients with TP53 alterations experienced a worse prognosis compared to patients with wild-type TP53 genes. Conversely, patient clinical outcomes were similar within patients with BRCA- and HRR-related genes versus non-HRR-related genes. However, although the frequency of patients with BRCA- and HRR-related alterations and mutations was relatively small, this setting could deserve an investigation into drug actionability, and potentially benefit from PARP inhibitors. ABSTRACT: Uterine leiomyosarcomas (uLMS) is a very rare disease, and patients experience a dismal prognosis even when treated with chemotherapy. Therefore, a more in-depth molecular characterization of this disease could provide suitable data for the identification of potential target-based drugs. This retrospective, single institutional study aimed to define the frequencies of gene alterations in uLMS, especially regarding the somatic mutations of BRCA and Homologous Recombination Repair (HRR) genes, and the impact of molecular alterations on clinical outcomes. The 16-genes Next-Generation Sequencing (NGS) panel, Homologous Recombination Solution TM (HRS, Sophia Genetics, Saint Sulpice, Switzerland), was used for the molecular evaluation of samples. The majority of patients (66/105, 63%) carried at least one sequence alteration, with a prevalence of TP53 involvement followed by RAD51B, BRCA1/2, and FANCL. Patients with TP53 gene alterations experienced a significantly worse prognosis for progression free survival (PFS) and overall survival (OS) versus wild-type patients. Given the number of patients with the BRCA1/2 mutation (N = 12), we included them in the HRR patient group; there was no difference in clinical outcomes with HRR versus non-HRR. The Cox’s multivariate analysis showed that stage and TP53 gene alterations resulted in a significantly worse OS. The integration of gene networking data, such as tumor mutation burdens and cancer driver gene identification, could show a clearer discrimination of gene distribution patterns, and lead to the implementation of therapeutic targets. |
---|