Cargando…
Genome-Wide Association Study Reveals That PvGUX1_1 Is Associated with Pod Stringlessness in Snap Bean (Phaseolus vulgaris L.)
SIMPLE SUMMARY: Using 138 snap bean accessions as plant materials, we investigated their suture strings across two years. With the goal of identifying the gene(s) responsible for the formation of suture strings, we conducted a genome-wide association study. A strong association signal was found in a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024788/ https://www.ncbi.nlm.nih.gov/pubmed/35453811 http://dx.doi.org/10.3390/biology11040611 |
Sumario: | SIMPLE SUMMARY: Using 138 snap bean accessions as plant materials, we investigated their suture strings across two years. With the goal of identifying the gene(s) responsible for the formation of suture strings, we conducted a genome-wide association study. A strong association signal was found in a 266.19 kb region on Chr02. Within the region, 23 candidate genes were identified. Importantly, the sequence and gene expression of PvGUX1_1 differed significantly between sutured pods and non-sutured pods. In addition, PvGUX1_1 was also a domesticated locus that diverged from PvGUX1_2 during an early stage. The results obtained in this study can provide important information for the improvement of pod quality in snap beans. ABSTRACT: Suture strings are a particularly important pod trait that determine the quality and texture of snap beans (Phaseolus vulgaris L.). The St locus on chromosome 2 has been described as a major locus associated with suture strings. However, the gene and genetic basis underlying this locus remain unknown. Here, we investigated the suture strings of 138 snap bean accessions across two years. A total of 3.66 million single-nucleotide polymorphisms (SNPs) were obtained by deep resequencing. Based on these SNPs, we identified a strong association signal on Chr02 and a promising candidate gene, PvGUX1_1. Further analysis revealed that the 2 bp deletion in the exon of PvGUX1_1 was significantly associated with stringlessness. Comparative mapping indicated that PvGUX1_1 was a domesticated locus and diverged from PvGUX1_2 during an early stage. Our study provides important insights into the genetic mechanism of suture string formation and useful information for snap bean improvement. |
---|