Cargando…
Cadmium Stabilization and Redox Transformation Mechanism in Maize Using Nanoscale Zerovalent-Iron-Enriched Biochar in Cadmium-Contaminated Soil
Cadmium (Cd) is a readily available metal in the soil matrix, which obnoxiously affects plants and microbiota; thus, its removal has become a global concern. For this purpose, a multifunctional nanoscale zerovalent—iron enriched biochar (nZVI/BC) was used to alleviate the Cd—toxicity in maize. Resul...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024939/ https://www.ncbi.nlm.nih.gov/pubmed/35448802 http://dx.doi.org/10.3390/plants11081074 |
Sumario: | Cadmium (Cd) is a readily available metal in the soil matrix, which obnoxiously affects plants and microbiota; thus, its removal has become a global concern. For this purpose, a multifunctional nanoscale zerovalent—iron enriched biochar (nZVI/BC) was used to alleviate the Cd—toxicity in maize. Results revealed that the nZVI/BC application significantly enhanced the plant growth (57%), chlorophyll contents (65%), intracellular permeability (61%), and biomass production index (76%) by restraining Cd uptake relative to Cd control. A Cd stabilization mechanism was proposed, suggesting that high dispersion of organic functional groups (C–O, C–N, Fe–O) over the surface of nZVI/BC might induce complex formations with cadmium by the ion exchange process. Besides this, the regular distribution and deep insertion of Fe particles in nZVI/BC prevent self-oxidation and over-accumulation of free radicals, which regulate the redox transformation by alleviating Cd/Fe(+) translations in the plant. Current findings have exposed the diverse functions of nanoscale zerovalent-iron-enriched biochar on plant health and suggest that nZVI/BC is a competent material, feasible to control Cd hazards and improve crop growth and productivity in Cd-contaminated soil. |
---|