Cargando…
Knowledge Reuse of Multi-Agent Reinforcement Learning in Cooperative Tasks
With the development and appliance of multi-agent systems, multi-agent cooperation is becoming an important problem in artificial intelligence. Multi-agent reinforcement learning (MARL) is one of the most effective methods for solving multi-agent cooperative tasks. However, the huge sample complexit...
Autores principales: | Shi, Daming, Tong, Junbo, Liu, Yi, Fan, Wenhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025018/ https://www.ncbi.nlm.nih.gov/pubmed/35455134 http://dx.doi.org/10.3390/e24040470 |
Ejemplares similares
-
KnowRU: Knowledge Reuse via Knowledge Distillation in Multi-Agent Reinforcement Learning
por: Gao, Zijian, et al.
Publicado: (2021) -
Optimal Policy of Multiplayer Poker via Actor-Critic Reinforcement Learning
por: Shi, Daming, et al.
Publicado: (2022) -
DTDE: A new cooperative multi-agent reinforcement learning framework
por: Wen, Guanghui, et al.
Publicado: (2021) -
Analysing factorizations of action-value networks for cooperative multi-agent reinforcement learning
por: Castellini, Jacopo, et al.
Publicado: (2021) -
Learning multi-agent cooperation
por: Rivera, Corban, et al.
Publicado: (2022)