Cargando…
High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser
Two-dimensional (2D) materials show great promise as saturable absorbers (SAs) for ultrafast fiber lasers. However, the relatively low modulation depth and poor stability of some 2D materials, such as graphene and black phosphorus, restrict their applications in the mid-infrared pulse generation. He...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025076/ https://www.ncbi.nlm.nih.gov/pubmed/35458051 http://dx.doi.org/10.3390/nano12081343 |
_version_ | 1784690777671073792 |
---|---|
author | Guo, Xin Wang, Shuai Yan, Peiguang Wang, Jinzhang Yu, Linpeng Liu, Wenjun Zheng, Zhijian Guo, Chunyu Ruan, Shuangchen |
author_facet | Guo, Xin Wang, Shuai Yan, Peiguang Wang, Jinzhang Yu, Linpeng Liu, Wenjun Zheng, Zhijian Guo, Chunyu Ruan, Shuangchen |
author_sort | Guo, Xin |
collection | PubMed |
description | Two-dimensional (2D) materials show great promise as saturable absorbers (SAs) for ultrafast fiber lasers. However, the relatively low modulation depth and poor stability of some 2D materials, such as graphene and black phosphorus, restrict their applications in the mid-infrared pulse generation. Herein, we first report a novel 2D double transition metal carbide, denoted as Mo(2)Ti(2)C(3)T(x) MXene, as the saturable absorber (SA) for a passively Q-switched mid-infrared fiber laser. Due to the unique four-metal atomic layer structure, the Mo(2)Ti(2)C(3)T(x) exhibits superior saturable absorption properties, particularly with a higher modulation depth (40% at 2796 nm) than most of the other reported 2D SA materials. After incorporating the MXene SA with an erbium-doped fiber system, the passively Q-switched pulses were achieved with a repetition rate of 157.3 kHz, the shortest pulse width of 370 ns, and single-pulse energy of 1.92 μJ, respectively. Such results extend the MXene-based SAs as promising candidates for advanced photonic devices. |
format | Online Article Text |
id | pubmed-9025076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90250762022-04-23 High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser Guo, Xin Wang, Shuai Yan, Peiguang Wang, Jinzhang Yu, Linpeng Liu, Wenjun Zheng, Zhijian Guo, Chunyu Ruan, Shuangchen Nanomaterials (Basel) Article Two-dimensional (2D) materials show great promise as saturable absorbers (SAs) for ultrafast fiber lasers. However, the relatively low modulation depth and poor stability of some 2D materials, such as graphene and black phosphorus, restrict their applications in the mid-infrared pulse generation. Herein, we first report a novel 2D double transition metal carbide, denoted as Mo(2)Ti(2)C(3)T(x) MXene, as the saturable absorber (SA) for a passively Q-switched mid-infrared fiber laser. Due to the unique four-metal atomic layer structure, the Mo(2)Ti(2)C(3)T(x) exhibits superior saturable absorption properties, particularly with a higher modulation depth (40% at 2796 nm) than most of the other reported 2D SA materials. After incorporating the MXene SA with an erbium-doped fiber system, the passively Q-switched pulses were achieved with a repetition rate of 157.3 kHz, the shortest pulse width of 370 ns, and single-pulse energy of 1.92 μJ, respectively. Such results extend the MXene-based SAs as promising candidates for advanced photonic devices. MDPI 2022-04-13 /pmc/articles/PMC9025076/ /pubmed/35458051 http://dx.doi.org/10.3390/nano12081343 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Xin Wang, Shuai Yan, Peiguang Wang, Jinzhang Yu, Linpeng Liu, Wenjun Zheng, Zhijian Guo, Chunyu Ruan, Shuangchen High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser |
title | High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser |
title_full | High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser |
title_fullStr | High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser |
title_full_unstemmed | High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser |
title_short | High Modulation Depth Enabled by Mo(2)Ti(2)C(3)T(x) MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser |
title_sort | high modulation depth enabled by mo(2)ti(2)c(3)t(x) mxene for q-switched pulse generation in a mid-infrared fiber laser |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025076/ https://www.ncbi.nlm.nih.gov/pubmed/35458051 http://dx.doi.org/10.3390/nano12081343 |
work_keys_str_mv | AT guoxin highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT wangshuai highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT yanpeiguang highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT wangjinzhang highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT yulinpeng highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT liuwenjun highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT zhengzhijian highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT guochunyu highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser AT ruanshuangchen highmodulationdepthenabledbymo2ti2c3txmxeneforqswitchedpulsegenerationinamidinfraredfiberlaser |