Cargando…
Medical Radiation Exposure Reduction in PET via Super-Resolution Deep Learning Model
In positron emission tomography (PET) imaging, image quality correlates with the injected [18F]-fluorodeoxyglucose (FDG) dose and acquisition time. If image quality improves from short-acquisition PET images via the super-resolution (SR) deep learning technique, it is possible to reduce the injected...
Autores principales: | Yoshimura, Takaaki, Hasegawa, Atsushi, Kogame, Shoki, Magota, Keiichi, Kimura, Rina, Watanabe, Shiro, Hirata, Kenji, Sugimori, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025130/ https://www.ncbi.nlm.nih.gov/pubmed/35453920 http://dx.doi.org/10.3390/diagnostics12040872 |
Ejemplares similares
-
Prostatic urinary tract visualization with super-resolution deep learning models
por: Yoshimura, Takaaki, et al.
Publicado: (2023) -
Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images
por: Kawakami, Masashi, et al.
Publicado: (2020) -
Voxel based comparison and texture analysis of (18)F-FDG and (18)F-FMISO PET of patients with head-and-neck cancer
por: Kroenke, Markus, et al.
Publicado: (2019) -
A Preliminary Study to Use SUVmax of FDG PET-CT as an Identifier of Lesion for Artificial Intelligence
por: Hirata, Kenji, et al.
Publicado: (2021) -
Biodistribution and radiation dosimetry of the novel hypoxia PET probe [(18)F]DiFA and comparison with [(18)F]FMISO
por: Watanabe, Shiro, et al.
Publicado: (2019)