Cargando…
Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete
Compressive and flexural strength are the crucial properties of a material. The strength of recycled aggregate concrete (RAC) is comparatively lower than that of natural aggregate concrete. Several factors, including the recycled aggregate replacement ratio, parent concrete strength, water–cement ra...
Autores principales: | Yuan, Xiongzhou, Tian, Yuze, Ahmad, Waqas, Ahmad, Ayaz, Usanova, Kseniia Iurevna, Mohamed, Abdeliazim Mustafa, Khallaf, Rana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025364/ https://www.ncbi.nlm.nih.gov/pubmed/35454516 http://dx.doi.org/10.3390/ma15082823 |
Ejemplares similares
-
Fly Ash Application as Supplementary Cementitious Material: A Review
por: Li, Guanlei, et al.
Publicado: (2022) -
Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Evaluation of Artificial Intelligence Methods to Estimate the Compressive Strength of Geopolymers
por: Zou, Yong, et al.
Publicado: (2022) -
A Step towards Concrete with Partial Substitution of Waste Glass (WG) in Concrete: A Review
por: Ahmad, Jawad, et al.
Publicado: (2022) -
Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods
por: Amin, Muhammad Nasir, et al.
Publicado: (2022)