Cargando…

Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations

In this paper, four stabilized methods based on the lowest equal-order finite element pair for the steady micropolar Navier–Stokes equations (MNSE) are presented, which are penalty, regular, multiscale enrichment, and local Gauss integration methods. A priori properties, existence, uniqueness, stabi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jingnan, Liu, Demin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025415/
https://www.ncbi.nlm.nih.gov/pubmed/35455117
http://dx.doi.org/10.3390/e24040454
Descripción
Sumario:In this paper, four stabilized methods based on the lowest equal-order finite element pair for the steady micropolar Navier–Stokes equations (MNSE) are presented, which are penalty, regular, multiscale enrichment, and local Gauss integration methods. A priori properties, existence, uniqueness, stability, and error estimation based on Fem approximation of all the methods are proven for the physical variables. Finally, some numerical examples are displayed to show the numerical characteristics of these methods.