Cargando…
ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient & Low-Latency Deep Spiking Neural Networks for 3D Image Recognition
High-quality 3D image recognition is an important component of many vision and robotics systems. However, the accurate processing of these images requires the use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this challenge, we propose the use of Spiking Neural Networks (S...
Autores principales: | Datta, Gourav, Kundu, Souvik, Jaiswal, Akhilesh R., Beerel, Peter A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025538/ https://www.ncbi.nlm.nih.gov/pubmed/35464314 http://dx.doi.org/10.3389/fnins.2022.815258 |
Ejemplares similares
-
A processing-in-pixel-in-memory paradigm for resource-constrained TinyML applications
por: Datta, Gourav, et al.
Publicado: (2022) -
Spike-Based Approximate Backpropagation Algorithm of Brain-Inspired Deep SNN for Sonar Target Classification
por: Liu, Yang, et al.
Publicado: (2022) -
Neuromorphic-P(2)M: processing-in-pixel-in-memory paradigm for neuromorphic image sensors
por: Kaiser, Md Abdullah-Al, et al.
Publicado: (2023) -
A Hardware Implementation of SNN-Based Spatio-Temporal Memory Model
por: Liu, Kefei, et al.
Publicado: (2019) -
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022)