Cargando…

Identification and Characterization of Two Bibenzyl Glycosyltransferases from the Liverwort Marchantia polymorpha

Liverworts are rich in bibenzyls and related O-glycosides, which show antioxidant activity. However, glycosyltransferases that catalyze the glycosylation of bibenzyls have not yet been characterized. Here, we identified two bibenzyl UDP-glucosyltransferases named MpUGT737B1 and MpUGT741A1 from the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Rui-Lin, Zhang, Jiao-Zhen, Liu, Xin-Yan, Deng, Jian-Qun, Zhu, Ting-Ting, Ni, Rong, Tan, Hui, Sheng, Ju-Zheng, Lou, Hong-Xiang, Cheng, Ai-Xia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025568/
https://www.ncbi.nlm.nih.gov/pubmed/35453420
http://dx.doi.org/10.3390/antiox11040735
Descripción
Sumario:Liverworts are rich in bibenzyls and related O-glycosides, which show antioxidant activity. However, glycosyltransferases that catalyze the glycosylation of bibenzyls have not yet been characterized. Here, we identified two bibenzyl UDP-glucosyltransferases named MpUGT737B1 and MpUGT741A1 from the model liverwort Marchantia polymorpha. The in vitro enzymatic assay revealed that MpUGT741A1 specifically accepted the bibenzyl lunularin as substrate. MpUGT737B1 could accept bibenzyls, dihydrochalcone and phenylpropanoids as substrates, and could convert phloretin to phloretin-4-O-glucoside and phloridzin, which showed inhibitory activity against tyrosinase and antioxidant activity. The results of sugar donor selectivity showed that MpUGT737B1 and MpUGT741A1 could only accept UDP-glucose as a substrate. The expression levels of these MpUGTs were considerably increased after UV irradiation, which generally caused oxidative damage. This result indicates that MpUGT737B1 and MpUGT741A1 may play a role in plant stress adaption. Subcellular localization indicates that MpUGT737B1 and MpUGT741A1 were expressed in the cytoplasm and nucleus. These enzymes should provide candidate genes for the synthesis of bioactive bibenzyl O-glucosides and the improvement of plant antioxidant capacity.