Cargando…
A Penalization Method for Estimating Heterogeneous Covariate Effects in Cancer Genomic Data
In high-throughput profiling studies, extensive efforts have been devoted to searching for the biomarkers associated with the development and progression of complex diseases. The heterogeneity of covariate effects associated with the outcomes across subjects has been noted in the literature. In this...
Autores principales: | Luo, Ziye, Zhang, Yuzhao, Sun, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025588/ https://www.ncbi.nlm.nih.gov/pubmed/35456506 http://dx.doi.org/10.3390/genes13040702 |
Ejemplares similares
-
Performance of penalized maximum likelihood in estimation of genetic covariances matrices
por: Meyer, Karin
Publicado: (2011) -
Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates
por: Rees, Jessica M. B., et al.
Publicado: (2019) -
Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces
por: Gentry, Amanda Elswick, et al.
Publicado: (2015) -
An alternative covariance estimator to investigate genetic heterogeneity in populations
por: Heslot, Nicolas, et al.
Publicado: (2015) -
Fast covariance estimation for sparse functional data
por: Xiao, Luo, et al.
Publicado: (2017)