Cargando…
A Robust Fire Detection Model via Convolution Neural Networks for Intelligent Robot Vision Sensing
Accurate fire identification can help to control fires. Traditional fire detection methods are mainly based on temperature or smoke detectors. These detectors are susceptible to damage or interference from the outside environment. Meanwhile, most of the current deep learning methods are less discrim...
Autores principales: | An, Qing, Chen, Xijiang, Zhang, Junqian, Shi, Ruizhe, Yang, Yuanjun, Huang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025736/ https://www.ncbi.nlm.nih.gov/pubmed/35458913 http://dx.doi.org/10.3390/s22082929 |
Ejemplares similares
-
EPSDNet: Efficient Campus Parking Space Detection via Convolutional Neural Networks and Vehicle Image Recognition for Intelligent Human–Computer Interactions
por: An, Qing, et al.
Publicado: (2022) -
Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks
por: Jang, Hojin, et al.
Publicado: (2023) -
Robust Kalman Filtering Cooperated Elman Neural Network Learning for Vision-Sensing-Based Robotic Manipulation with Global Stability
por: Zhong, Xungao, et al.
Publicado: (2013) -
Vision for Robust Robot Manipulation
por: Martinez-Martin, Ester, et al.
Publicado: (2019) -
A guide to convolutional neural networks for computer vision
por: Khan, Salman, et al.
Publicado: (2018)