Cargando…

The Expression of Signaling Genes in Breast Cancer Cells

SIMPLE SUMMARY: The aim of the study was to investigate the effect of a drug for cancer—paclitaxel—on the expression of genes encoding the signaling factors in breast cancer cells outside organisms. The tested cells were harvested from the mammary glands of 36 women with breast cancer. The microarra...

Descripción completa

Detalles Bibliográficos
Autores principales: Rzymowska, Jolanta, Wilkołaski, Andrzej, Szatkowska, Lidia, Grzybowska, Ludmiła
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025738/
https://www.ncbi.nlm.nih.gov/pubmed/35453754
http://dx.doi.org/10.3390/biology11040555
Descripción
Sumario:SIMPLE SUMMARY: The aim of the study was to investigate the effect of a drug for cancer—paclitaxel—on the expression of genes encoding the signaling factors in breast cancer cells outside organisms. The tested cells were harvested from the mammary glands of 36 women with breast cancer. The microarray technology —the carrier with applied DNA samples—was employed for the identification of gene expression. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cell by increasing the expression of the genes encoding signaling proteins. This is the molecule of intercellular communication. The analysis of the results suggests that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with higher cytotoxicity and this had a negative effect on the tested tumor cells. ABSTRACT: The aim of the study was to investigate the effect of paclitaxel on the expression of genes encoding signaling factors in breast cancer cells in in vitro conditions after incubation with the said chemotherapeutic. The tested cells were harvested from the mammary glands of 36 patients with early breast cancer. The microarray technology was employed for the identification of gene expression. For this purpose, mRNA isolated from tumor cells was used. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cells by increasing the expression of most genes encoding signaling proteins and receptors. The analysis of the results suggested that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with a high cytotoxicity.