Cargando…

Influence of Genotypic and Environmental Factors on Tobacco Leaves Based on Metabolomics

Environmental factors affect plant metabolites, different climates, cultivation conditions, and biotic stresses and genotypes strongly affect their chemical composition and contents. Our aim is to examine the environmental and genetic interaction effects on tobacco metabolite composition. UPLC-QTOF...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Bo, Liang, Junyang, Zhang, Mengmeng, Zhao, Mingqin, Ji, Xiaoming, Wang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025834/
https://www.ncbi.nlm.nih.gov/pubmed/35455081
http://dx.doi.org/10.3390/life12040590
Descripción
Sumario:Environmental factors affect plant metabolites, different climates, cultivation conditions, and biotic stresses and genotypes strongly affect their chemical composition and contents. Our aim is to examine the environmental and genetic interaction effects on tobacco metabolite composition. UPLC-QTOF MS/MS coupled with multivariate data analyses were applied for the metabolomics analysis of three tobacco cultivars from different planting regions in China. Principal component analysis (PCA) revealed that environmental factors have a greater effect on tobacco metabolism compared to genotypes. Twelve biomarkers were screened by orthogonal partial least squares discrimination analysis (OPLS-DA). Univariate analysis indicated that Malate, conjugated chlorogenic acid, chlorogenic acid, quercetin 3-rutinoside-7-glucoside, and unknown compound 5 were only influenced by environmental factors (independent of genotype). Quinate, neochlorogenic acid, and ouabagenin, taxezopidine K1, taxezopidine K2, and taxezopidine K3 in tobacco were influenced by the interaction of environmental factors and the genotype. Our results suggest that metabolomics based on UPLC-QTOF MS/MS could be used to analyze the ecological functions of biomarker metabolites and understand the mechanisms of plant adaption to the environment.