Cargando…

CNN-FWS: A Model for the Diagnosis of Normal and Abnormal ECG with Feature Adaptive

(1) Background and objective: Cardiovascular disease is one of the most common causes of death in today’s world. ECG is crucial in the early detection and prevention of cardiovascular disease. In this study, an improved deep learning method is proposed to diagnose abnormal and normal ECG accurately....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Junjiang, Lv, Jintao, Kong, Dongdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025839/
https://www.ncbi.nlm.nih.gov/pubmed/35455133
http://dx.doi.org/10.3390/e24040471
Descripción
Sumario:(1) Background and objective: Cardiovascular disease is one of the most common causes of death in today’s world. ECG is crucial in the early detection and prevention of cardiovascular disease. In this study, an improved deep learning method is proposed to diagnose abnormal and normal ECG accurately. (2) Methods: This paper proposes a CNN-FWS that combines three convolutional neural networks (CNN) and recursive feature elimination based on feature weights (FW-RFE), which diagnoses abnormal and normal ECG. F1 score and Recall are used to evaluate the performance. (3) Results: A total of 17,259 records were used in this study, which validated the diagnostic performance of CNN-FWS for normal and abnormal ECG signals in 12 leads. The experimental results show that the F1 score of CNN-FWS is 0.902, and the Recall of CNN-FWS is 0.889. (4) Conclusion: CNN-FWS absorbs the advantages of convolutional neural networks (CNN) to obtain three parts of different spatial information and enrich the learned features. CNN-FWS can select the most relevant features while eliminating unrelated and redundant features by FW-RFE, making the residual features more representative and effective. The method is an end-to-end modeling approach that enables an adaptive feature selection process without human intervention.