Cargando…

Inability to Catabolize Rhamnose by Sinorhizobium meliloti Rm1021 Affects Competition for Nodule Occupancy

Rhizobium leguminosarum strains unable to grow on rhamnose as a sole carbon source are less competitive for nodule occupancy. To determine if the ability to use rhamnose as a sole carbon source affects competition for nodule occupancy in Sinorhizobium meliloti, Tn5 mutants unable to use rhamnose as...

Descripción completa

Detalles Bibliográficos
Autores principales: Rivers, Damien M. R., Kim, Derek D., Oresnik, Ivan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025865/
https://www.ncbi.nlm.nih.gov/pubmed/35456783
http://dx.doi.org/10.3390/microorganisms10040732
Descripción
Sumario:Rhizobium leguminosarum strains unable to grow on rhamnose as a sole carbon source are less competitive for nodule occupancy. To determine if the ability to use rhamnose as a sole carbon source affects competition for nodule occupancy in Sinorhizobium meliloti, Tn5 mutants unable to use rhamnose as a sole carbon source were isolated. S. meliloti mutations affecting rhamnose utilization were found in two operons syntenous to those of R. leguminosarum. Although the S. meliloti Tn5 mutants were complemented using an R. leguminosarum cosmid that contains the entire wild-type rhamnose catabolic locus, complementation did not occur if the cosmids carried Tn5 insertions within the locus. Through a series of heterologous complementation experiments, enzyme assays, gene fusion, and transport experiments, we show that the S. meliloti regulator, RhaR, is dominant to its R. leguminosarum counterpart. In addition, the data support the hypothesis that the R. leguminosarum kinase is capable of directly phosphorylating rhamnose and rhamnulose, whereas the S. meliloti kinase does not possess rhamnose kinase activity. In nodule competition assays, S. meliloti mutants incapable of rhamnose transport were shown to be less competitive than the wild-type and had a decreased ability to bind plant roots in the presence of rhamnose. The data suggests that rhamnose catabolism is a general determinant in competition for nodule occupancy that spans across rhizobial species.