Cargando…
An Extended Kalman Filter for Magnetic Field SLAM Using Gaussian Process Regression
We present a computationally efficient algorithm for using variations in the ambient magnetic field to compensate for position drift in integrated odometry measurements (dead-reckoning estimates) through simultaneous localization and mapping (SLAM). When the magnetic field map is represented with a...
Autores principales: | Viset, Frida, Helmons, Rudy, Kok, Manon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025971/ https://www.ncbi.nlm.nih.gov/pubmed/35458817 http://dx.doi.org/10.3390/s22082833 |
Ejemplares similares
-
Computationally Efficient Cooperative Dynamic Range-Only SLAM Based on Sum of Gaussian Filter †
por: Kim, Jung-Hee, et al.
Publicado: (2020) -
BEM-Based Magnetic Field Reconstruction by Ensemble Kálmán Filtering
por: Liebsch, Melvin, et al.
Publicado: (2022) -
Structure from Motion using the Extended Kalman Filter
por: Civera, Javier, et al.
Publicado: (2012) -
A comparison of nonlinear extensions to the ensemble Kalman filter: Gaussian anamorphosis and two-step ensemble filters
por: Grooms, Ian
Publicado: (2022) -
Improving Attitude Estimation Using Gaussian-Process-Regression-Based Magnetic Field Maps
por: Kuevor, Prince E., et al.
Publicado: (2021)