Cargando…
Scaling Graph Propagation Kernels for Predictive Learning
Many real-world applications deal with data that have an underlying graph structure associated with it. To perform downstream analysis on such data, it is crucial to capture relational information of nodes over their expanded neighborhood efficiently. Herein, we focus on the problem of Collective Cl...
Autores principales: | Vijayan, Priyesh, Chandak, Yash, Khapra, Mitesh M., Parthasarathy, Srinivasan, Ravindran, Balaraman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026185/ https://www.ncbi.nlm.nih.gov/pubmed/35464122 http://dx.doi.org/10.3389/fdata.2022.616617 |
Ejemplares similares
-
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
Misc-GAN: A Multi-scale Generative Model for Graphs
por: Zhou, Dawei, et al.
Publicado: (2019) -
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023) -
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021) -
FoodKG: A Tool to Enrich Knowledge Graphs Using Machine Learning Techniques
por: Gharibi, Mohamed, et al.
Publicado: (2020)