Cargando…

Versatile Supramolecular Complex for Targeted Antimicrobial Photodynamic Inactivation

[Image: see text] We report the development of a supramolecular structure endowed with photosensitizing properties and targeting capability for antimicrobial photodynamic inactivation. Our synthetic strategy uses the tetrameric bacterial protein streptavidin, labeled with the photosensitizer eosin,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mussini, Andrea, Uriati, Eleonora, Hally, Cormac, Nonell, Santi, Bianchini, Paolo, Diaspro, Alberto, Pongolini, Stefano, Delcanale, Pietro, Abbruzzetti, Stefania, Viappiani, Cristiano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026257/
https://www.ncbi.nlm.nih.gov/pubmed/35266706
http://dx.doi.org/10.1021/acs.bioconjchem.2c00067
Descripción
Sumario:[Image: see text] We report the development of a supramolecular structure endowed with photosensitizing properties and targeting capability for antimicrobial photodynamic inactivation. Our synthetic strategy uses the tetrameric bacterial protein streptavidin, labeled with the photosensitizer eosin, as the main building block. Biotinylated immunoglobulin G (IgG) from human serum, known to associate with Staphylococcus aureus protein A, was bound to the complex streptavidin–eosin. Fluorescence correlation spectroscopy and fluorescence microscopy demonstrate binding of the complex to S. aureus. Efficient photoinactivation is observed for S. aureus suspensions treated with IgG–streptavidin–eosin at concentrations higher than 0.5 μM and exposed to green light. The proposed strategy offers a flexible platform for targeting a variety of molecules and microbial species.