Cargando…
A Fusion Transformer for Multivariable Time Series Forecasting: The Mooney Viscosity Prediction Case
Multivariable time series forecasting is an important topic of machine learning, and it frequently involves a complex mix of inputs, including static covariates and exogenous time series input. A targeted investigation of this input data is critical for improving prediction performance. In this pape...
Autores principales: | Yang, Ye, Lu, Jiangang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026292/ https://www.ncbi.nlm.nih.gov/pubmed/35455191 http://dx.doi.org/10.3390/e24040528 |
Ejemplares similares
-
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022) -
Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process
por: Zhang, Yan, et al.
Publicado: (2022) -
Visual Search of Mooney Faces
por: Goold, Jessica E., et al.
Publicado: (2016) -
Dr. Fletcher D. Mooney
Publicado: (1897) -
Combined mechanistic and genetic programming approach to modeling pilot NBR production: influence of feed compositions on rubber Mooney viscosity
por: He, Ge, et al.
Publicado: (2021)