Cargando…
Current Advances of Nanomedicines Delivering Arsenic Trioxide for Enhanced Tumor Therapy
Arsenic trioxide (ATO) is one of the first-line chemotherapeutic drugs for acute promyelocytic leukemia. Its anti-cancer activities against various human neoplastic diseases have been extensively studied. However, the clinical use of ATO for solid tumors is limited, and these limitations are because...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026299/ https://www.ncbi.nlm.nih.gov/pubmed/35456577 http://dx.doi.org/10.3390/pharmaceutics14040743 |
Sumario: | Arsenic trioxide (ATO) is one of the first-line chemotherapeutic drugs for acute promyelocytic leukemia. Its anti-cancer activities against various human neoplastic diseases have been extensively studied. However, the clinical use of ATO for solid tumors is limited, and these limitations are because of severe systemic toxicity, low bioavailability, and quick renal elimination before it reaches the target site. Although without much success, several efforts have been made to boost ATO bioavailability toward solid tumors without raising its dose. It has been found that nanomedicines have various advantages for drug delivery, including increased bioavailability, effectiveness, dose-response, targeting capabilities, and safety as compared to traditional drugs. Therefore, nanotechnology to deliver ATO to solid tumors is the main topic of this review, which outlines the previous and present medical applications of ATO. We also summarised ATO anti-cancer mechanisms, limitations, and outcomes of combinatorial treatment with chemo agents. As a result, we strongly recommend conducting pre-clinical and clinical studies of ATO, especially nano-system-based ones that might lead to a novel combination therapy for cancer treatment with high efficacy, bioavailability, and low toxicity for cancer patients. |
---|