Cargando…
Superpixel-Oriented Label Distribution Learning for Skin Lesion Segmentation
Lesion segmentation is a critical task in skin cancer analysis and detection. When developing deep learning-based segmentation methods, we need a large number of human-annotated labels to serve as ground truth for model-supervised learning. Due to the complexity of dermatological images and the subj...
Autores principales: | Zhou, Qiaoer, He, Tingting, Zou, Yuanwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026477/ https://www.ncbi.nlm.nih.gov/pubmed/35453986 http://dx.doi.org/10.3390/diagnostics12040938 |
Ejemplares similares
-
Automatic Detection of Age-Related Macular Degeneration Based on Deep Learning and Local Outlier Factor Algorithm
por: He, Tingting, et al.
Publicado: (2022) -
Deep learning approach based on superpixel segmentation assisted labeling for automatic pressure ulcer diagnosis
por: Chang, Che Wei, et al.
Publicado: (2022) -
Refining skin lesions classification performance using geometric features of superpixels
por: Moldovanu, Simona, et al.
Publicado: (2023) -
Automatic Graph Cut Segmentation of Lesions in CT Using Mean Shift Superpixels
por: Ye, Xujiong, et al.
Publicado: (2010) -
Superpixel Segmentation Based on Anisotropic Edge Strength
por: Wang, Gang, et al.
Publicado: (2019)