Cargando…
Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study
BACKGROUND: Predictive models for mental disorders or behaviors (e.g., suicide) have been successfully developed at the level of populations, yet current demographic and clinical variables are neither sensitive nor specific enough for making individual clinical predictions. Forecasting episodes of i...
Autores principales: | Ortiz, Abigail, Hintze, Arend, Burnett, Rachael, Gonzalez-Torres, Christina, Unger, Samantha, Yang, Dandan, Miao, Jingshan, Alda, Martin, Mulsant, Benoit H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026652/ https://www.ncbi.nlm.nih.gov/pubmed/35459150 http://dx.doi.org/10.1186/s12888-022-03923-1 |
Ejemplares similares
-
Predictors of adherence to electronic self-monitoring in patients with bipolar disorder: a contactless study using Growth Mixture Models
por: Ortiz, Abigail, et al.
Publicado: (2023) -
Predictors of adherence to electronic self-monitoring in patients with bipolar disorder: a contactless study using Growth Mixture Models
por: Ortiz, A., et al.
Publicado: (2023) -
The futility of long-term predictions in bipolar disorder: mood fluctuations are the result of deterministic chaotic processes
por: Ortiz, Abigail, et al.
Publicado: (2021) -
COVID-19: Implications for bipolar disorder clinical care and research
por: Xue, Siqi, et al.
Publicado: (2020) -
Higher illness burden is associated with reduced heart rate variability in bipolar disorder
por: Ortiz, A., et al.
Publicado: (2021)