Cargando…

Integrated Bioinformatics Analysis Identifies a New Stemness Index-Related Survival Model for Prognostic Prediction in Lung Adenocarcinoma

Background: Lung adenocarcinoma (LUAD) is one of the most lethal malignancies and is currently lacking in effective biomarkers to assist in diagnosis and therapy. The aim of this study is to investigate hub genes and develop a risk signature for predicting prognosis of LUAD patients. Methods: RNA-se...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Shaohui, Xu, Hongrui, Liu, Shuzhong, Yang, Bingjun, Li, Li, Zhao, Hui, Jiang, Chunyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026767/
https://www.ncbi.nlm.nih.gov/pubmed/35464867
http://dx.doi.org/10.3389/fgene.2022.860268
Descripción
Sumario:Background: Lung adenocarcinoma (LUAD) is one of the most lethal malignancies and is currently lacking in effective biomarkers to assist in diagnosis and therapy. The aim of this study is to investigate hub genes and develop a risk signature for predicting prognosis of LUAD patients. Methods: RNA-sequencing data and relevant clinical data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to identify hub genes associated with mRNA expression-based stemness indices (mRNAsi) in TCGA. We utilized LASSO Cox regression to assemble our predictive model. To validate our predictive model, me applied it to an external cohort. Results: mRNAsi index was significantly associated with the tissue type of LUAD, and high mRNAsi scores may have a protective influence on survival outcomes seen in LUAD patients. WGCNA indicated that the turquoise module was significantly correlated with the mRNAsi. We identified a 9-gene signature (CENPW, MCM2, STIL, RACGAP1, ASPM, KIF14, ANLN, CDCA8, and PLK1) from the turquoise module that could effectively identify a high-risk subset of these patients. Using the Kaplan-Meier survival curve, as well as the time-dependent receiver operating characteristic (tdROC) analysis, we determined that this gene signature had a strong predictive ability (AUC = 0.716). By combining the 9-gene signature with clinicopathological features, we were able to design a predictive nomogram. Finally, we additionally validated the 9-gene signature using two external cohorts from GEO and the model proved to be of high value. Conclusion: Our study shows that the 9-gene mRNAsi-related signature can predict the prognosis of LUAD patient and contribute to decisions in the treatment and prevention of LUAD patients.