Cargando…
Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells
The cellular internalization of drug carriers occurs via different endocytic pathways that ultimately involve the endosomes and the lysosomes, organelles where the pH value drops to 6.0 and 5.0, respectively. We aimed to design and characterize pH/temperature-responsive carriers for the effective de...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026771/ https://www.ncbi.nlm.nih.gov/pubmed/35456699 http://dx.doi.org/10.3390/pharmaceutics14040865 |
_version_ | 1784691193581404160 |
---|---|
author | Fundueanu, Gheorghe Constantin, Marieta Turtoi, Mihaela Bucatariu, Sanda-Maria Cosman, Bogdan Anghelache, Maria Voicu, Geanina Calin, Manuela |
author_facet | Fundueanu, Gheorghe Constantin, Marieta Turtoi, Mihaela Bucatariu, Sanda-Maria Cosman, Bogdan Anghelache, Maria Voicu, Geanina Calin, Manuela |
author_sort | Fundueanu, Gheorghe |
collection | PubMed |
description | The cellular internalization of drug carriers occurs via different endocytic pathways that ultimately involve the endosomes and the lysosomes, organelles where the pH value drops to 6.0 and 5.0, respectively. We aimed to design and characterize pH/temperature-responsive carriers for the effective delivery of the anti-tumoral drug doxorubicin. To this purpose, poly(N-isopropylacrylamide-co-vinylimidazole) was synthesized as an attractive pH/temperature-sensitive copolymer. Microspheres made of this copolymer, loaded with doxorubicin (MS-DXR), disintegrate in monodisperse nanospheres (NS-DXR) under conditions similar to that found in the bloodstream (pH = 7.4, temperature of 36 °C) releasing a small amount of payload. However, in environments that simulate the endosomal and lysosomal conditions, nanospheres solubilize, releasing the entire amount of drug. We followed the NS-DXR internalization using two cancer cell lines, hepatic carcinoma HepG2 cells and lung adenocarcinoma A549 cells. The data showed that NS-DXR are internalized to a greater extent by HepG2 cells than A549 cells, and this correlated with increased cytotoxicity induced by NS-DXR in HepG2 cells compared with A549 cells. Moreover, NS-DXR particles do not cause hemolysis and erythrocytes aggregation. Administered in vivo, NS-DXR localized in the liver and kidneys of mice, and the loading of DXR into NS resulted in the reduced renal clearance of DXR. In conclusion, the newly developed poly(N-isopropylacrylamide-co-vinyl imidazole) particles are biocompatible and may be introduced as carriers for doxorubicin to hepatic tumors. |
format | Online Article Text |
id | pubmed-9026771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90267712022-04-23 Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells Fundueanu, Gheorghe Constantin, Marieta Turtoi, Mihaela Bucatariu, Sanda-Maria Cosman, Bogdan Anghelache, Maria Voicu, Geanina Calin, Manuela Pharmaceutics Article The cellular internalization of drug carriers occurs via different endocytic pathways that ultimately involve the endosomes and the lysosomes, organelles where the pH value drops to 6.0 and 5.0, respectively. We aimed to design and characterize pH/temperature-responsive carriers for the effective delivery of the anti-tumoral drug doxorubicin. To this purpose, poly(N-isopropylacrylamide-co-vinylimidazole) was synthesized as an attractive pH/temperature-sensitive copolymer. Microspheres made of this copolymer, loaded with doxorubicin (MS-DXR), disintegrate in monodisperse nanospheres (NS-DXR) under conditions similar to that found in the bloodstream (pH = 7.4, temperature of 36 °C) releasing a small amount of payload. However, in environments that simulate the endosomal and lysosomal conditions, nanospheres solubilize, releasing the entire amount of drug. We followed the NS-DXR internalization using two cancer cell lines, hepatic carcinoma HepG2 cells and lung adenocarcinoma A549 cells. The data showed that NS-DXR are internalized to a greater extent by HepG2 cells than A549 cells, and this correlated with increased cytotoxicity induced by NS-DXR in HepG2 cells compared with A549 cells. Moreover, NS-DXR particles do not cause hemolysis and erythrocytes aggregation. Administered in vivo, NS-DXR localized in the liver and kidneys of mice, and the loading of DXR into NS resulted in the reduced renal clearance of DXR. In conclusion, the newly developed poly(N-isopropylacrylamide-co-vinyl imidazole) particles are biocompatible and may be introduced as carriers for doxorubicin to hepatic tumors. MDPI 2022-04-15 /pmc/articles/PMC9026771/ /pubmed/35456699 http://dx.doi.org/10.3390/pharmaceutics14040865 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fundueanu, Gheorghe Constantin, Marieta Turtoi, Mihaela Bucatariu, Sanda-Maria Cosman, Bogdan Anghelache, Maria Voicu, Geanina Calin, Manuela Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells |
title | Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells |
title_full | Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells |
title_fullStr | Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells |
title_full_unstemmed | Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells |
title_short | Bio-Responsive Carriers for Controlled Delivery of Doxorubicin to Cancer Cells |
title_sort | bio-responsive carriers for controlled delivery of doxorubicin to cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026771/ https://www.ncbi.nlm.nih.gov/pubmed/35456699 http://dx.doi.org/10.3390/pharmaceutics14040865 |
work_keys_str_mv | AT fundueanugheorghe bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells AT constantinmarieta bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells AT turtoimihaela bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells AT bucatariusandamaria bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells AT cosmanbogdan bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells AT anghelachemaria bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells AT voicugeanina bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells AT calinmanuela bioresponsivecarriersforcontrolleddeliveryofdoxorubicintocancercells |