Cargando…
Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF
Increased population necessitates an expansion of infrastructure and urbanization, resulting in growth in the construction industry. A rise in population also results in an increased plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be...
Autores principales: | Nafees, Afnan, Khan, Sherbaz, Javed, Muhammad Faisal, Alrowais, Raid, Mohamed, Abdeliazim Mustafa, Mohamed, Abdullah, Vatin, Nikolai Ivanovic |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026837/ https://www.ncbi.nlm.nih.gov/pubmed/35458331 http://dx.doi.org/10.3390/polym14081583 |
Ejemplares similares
-
Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP
por: Nafees, Afnan, et al.
Publicado: (2021) -
Predicting the Lateral Load Carrying Capacity of Reinforced Concrete Rectangular Columns: Gene Expression Programming
por: Asghar, Raheel, et al.
Publicado: (2022) -
Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2022) -
Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2021) -
Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques
por: Nafees, Afnan, et al.
Publicado: (2021)