Cargando…
Addressing Motion Blurs in Brain MRI Scans Using Conditional Adversarial Networks and Simulated Curvilinear Motions
In-scanner head motion often leads to degradation in MRI scans and is a major source of error in diagnosing brain abnormalities. Researchers have explored various approaches, including blind and nonblind deconvolutions, to correct the motion artifacts in MRI scans. Inspired by the recent success of...
Autores principales: | Li, Shangjin, Zhao, Yijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027264/ https://www.ncbi.nlm.nih.gov/pubmed/35448211 http://dx.doi.org/10.3390/jimaging8040084 |
Ejemplares similares
-
Motion Blur Microscopy
por: Goreke, Utku, et al.
Publicado: (2023) -
Misperceptions in the Trajectories of Objects undergoing Curvilinear Motion
por: Yilmaz, Ozgur, et al.
Publicado: (2012) -
Motion blur invariant for estimating motion parameters of medical ultrasound images
por: Honarvar Shakibaei Asli, Barmak, et al.
Publicado: (2021) -
Using a Blur Metric to Estimate Linear Motion Blur Parameters
por: Askari Javaran, Taiebeh, et al.
Publicado: (2021) -
Retrospective Motion Correction in Multishot MRI using Generative Adversarial Network
por: Usman, Muhammad, et al.
Publicado: (2020)