Cargando…
SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning
Coronavirus disease (COVID-19) broke out at the end of 2019, and has resulted in an ongoing global pandemic. Segmentation of pneumonia infections from chest computed tomography (CT) scans of COVID-19 patients is significant for accurate diagnosis and quantitative analysis. Deep learning-based method...
Autores principales: | Wang, Xiaoyan, Yuan, Yiwen, Guo, Dongyan, Huang, Xiaojie, Cui, Ying, Xia, Ming, Wang, Zhenhua, Bai, Cong, Chen, Shengyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027296/ https://www.ncbi.nlm.nih.gov/pubmed/35544999 http://dx.doi.org/10.1016/j.media.2022.102459 |
Ejemplares similares
-
Semi-supervised few-shot learning approach for plant diseases recognition
por: Li, Yang, et al.
Publicado: (2021) -
Few-shot segmentation with duplex network and attention augmented module
por: Zeng, Sifu, et al.
Publicado: (2023) -
FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection
por: Abdel-Basset, Mohamed, et al.
Publicado: (2021) -
Unsupervised Few-Shot Feature Learning via Self-Supervised Training
por: Ji, Zilong, et al.
Publicado: (2020) -
Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation
por: Song, Kechen, et al.
Publicado: (2023)