Cargando…
Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder, affecting 6.2 million patients and causing disability and decreased quality of life. The research is oriented nowadays toward artificial intelligence (AI)-based wearables for early diagnosis and long-term PD m...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027339/ https://www.ncbi.nlm.nih.gov/pubmed/35448249 http://dx.doi.org/10.3390/bios12040189 |
_version_ | 1784691338466295808 |
---|---|
author | Ileșan, Robert Radu Cordoș, Claudia-Georgiana Mihăilă, Laura-Ioana Fleșar, Radu Popescu, Ana-Sorina Perju-Dumbravă, Lăcrămioara Faragó, Paul |
author_facet | Ileșan, Robert Radu Cordoș, Claudia-Georgiana Mihăilă, Laura-Ioana Fleșar, Radu Popescu, Ana-Sorina Perju-Dumbravă, Lăcrămioara Faragó, Paul |
author_sort | Ileșan, Robert Radu |
collection | PubMed |
description | Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder, affecting 6.2 million patients and causing disability and decreased quality of life. The research is oriented nowadays toward artificial intelligence (AI)-based wearables for early diagnosis and long-term PD monitoring. Our primary objective is the monitoring and assessment of gait in PD patients. We propose a wearable physiograph for qualitative and quantitative gait assessment, which performs bilateral tracking of the foot biomechanics and unilateral tracking of arm balance. Gait patterns are assessed by means of correlation. The surface plot of a correlation coefficient matrix, generated from the recorded signals, is classified using convolutional neural networks into physiological or PD-specific gait. The novelty is given by the proposed AI-based decisional support procedure for gait assessment. A proof of concept of the proposed physiograph is validated in a clinical environment on five patients and five healthy controls, proving to be a feasible solution for ubiquitous gait monitoring and assessment in PD. PD management demonstrates the complexity of the human body. A platform empowering multidisciplinary, AI-evidence-based decision support assessments for optimal dosing between drug and non-drug therapy could lay the foundation for affordable precision medicine. |
format | Online Article Text |
id | pubmed-9027339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90273392022-04-23 Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization Ileșan, Robert Radu Cordoș, Claudia-Georgiana Mihăilă, Laura-Ioana Fleșar, Radu Popescu, Ana-Sorina Perju-Dumbravă, Lăcrămioara Faragó, Paul Biosensors (Basel) Article Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder, affecting 6.2 million patients and causing disability and decreased quality of life. The research is oriented nowadays toward artificial intelligence (AI)-based wearables for early diagnosis and long-term PD monitoring. Our primary objective is the monitoring and assessment of gait in PD patients. We propose a wearable physiograph for qualitative and quantitative gait assessment, which performs bilateral tracking of the foot biomechanics and unilateral tracking of arm balance. Gait patterns are assessed by means of correlation. The surface plot of a correlation coefficient matrix, generated from the recorded signals, is classified using convolutional neural networks into physiological or PD-specific gait. The novelty is given by the proposed AI-based decisional support procedure for gait assessment. A proof of concept of the proposed physiograph is validated in a clinical environment on five patients and five healthy controls, proving to be a feasible solution for ubiquitous gait monitoring and assessment in PD. PD management demonstrates the complexity of the human body. A platform empowering multidisciplinary, AI-evidence-based decision support assessments for optimal dosing between drug and non-drug therapy could lay the foundation for affordable precision medicine. MDPI 2022-03-23 /pmc/articles/PMC9027339/ /pubmed/35448249 http://dx.doi.org/10.3390/bios12040189 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ileșan, Robert Radu Cordoș, Claudia-Georgiana Mihăilă, Laura-Ioana Fleșar, Radu Popescu, Ana-Sorina Perju-Dumbravă, Lăcrămioara Faragó, Paul Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization |
title | Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization |
title_full | Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization |
title_fullStr | Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization |
title_full_unstemmed | Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization |
title_short | Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson’s Disease Management Optimization |
title_sort | proof of concept in artificial-intelligence-based wearable gait monitoring for parkinson’s disease management optimization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027339/ https://www.ncbi.nlm.nih.gov/pubmed/35448249 http://dx.doi.org/10.3390/bios12040189 |
work_keys_str_mv | AT ilesanrobertradu proofofconceptinartificialintelligencebasedwearablegaitmonitoringforparkinsonsdiseasemanagementoptimization AT cordosclaudiageorgiana proofofconceptinartificialintelligencebasedwearablegaitmonitoringforparkinsonsdiseasemanagementoptimization AT mihailalauraioana proofofconceptinartificialintelligencebasedwearablegaitmonitoringforparkinsonsdiseasemanagementoptimization AT flesarradu proofofconceptinartificialintelligencebasedwearablegaitmonitoringforparkinsonsdiseasemanagementoptimization AT popescuanasorina proofofconceptinartificialintelligencebasedwearablegaitmonitoringforparkinsonsdiseasemanagementoptimization AT perjudumbravalacramioara proofofconceptinartificialintelligencebasedwearablegaitmonitoringforparkinsonsdiseasemanagementoptimization AT faragopaul proofofconceptinartificialintelligencebasedwearablegaitmonitoringforparkinsonsdiseasemanagementoptimization |