Cargando…
Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia
BACKGROUND: The gut microbiota plays an important role in the early stages of human life. Our previous study showed that the abundance of intestinal flora involved in galactose metabolism was altered and correlated with increased serum bilirubin levels in children with jaundice. We conducted the pre...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027383/ https://www.ncbi.nlm.nih.gov/pubmed/35495115 http://dx.doi.org/10.1016/j.csbj.2022.03.039 |
_version_ | 1784691348983513088 |
---|---|
author | Zeng, Shujuan Wang, Zhangxing Zhang, Peng Yin, Zhaoqing Huang, Xunbin Tang, Xisheng Shi, Lindong Guo, Kaiping Liu, Ting Wang, Mingbang Qiu, Huixian |
author_facet | Zeng, Shujuan Wang, Zhangxing Zhang, Peng Yin, Zhaoqing Huang, Xunbin Tang, Xisheng Shi, Lindong Guo, Kaiping Liu, Ting Wang, Mingbang Qiu, Huixian |
author_sort | Zeng, Shujuan |
collection | PubMed |
description | BACKGROUND: The gut microbiota plays an important role in the early stages of human life. Our previous study showed that the abundance of intestinal flora involved in galactose metabolism was altered and correlated with increased serum bilirubin levels in children with jaundice. We conducted the present study to systematically evaluate alterations in the meconium metabolome of neonates with jaundice and search for metabolic markers associated with neonatal jaundice. METHODS: We included 68 neonates with neonatal hyperbilirubinemia, also known as neonatal jaundice (NJ) and 68 matched healthy controls (HC), collected meconium samples from them at birth, and performed metabolomic analysis via liquid chromatography-mass spectrometry. RESULTS: Gut metabolites enabled clearly distinguishing the neonatal jaundice (NJ) and healthy control (HC) groups. We also identified the compositions of the gut metabolites that differed significantly between the NJ and HC groups; these differentially significant metabolites were enriched in aminyl tRNA biosynthesis; pantothenic acid and coenzyme biosynthesis; and the valine, leucine and isoleucine biosynthesis pathways. Gut branched-chain amino acid (BCAA) levels were positively correlated with serum bilirubin levels, and the area under the receiver operating characteristic curve of the random forest classifier model based on BCAAs, proline, methionine, phenylalanine and total bilirubin reached 96.9%, showing good potential for diagnostic applications. Machine learning-based causal inference analysis revealed the causal effect of BCAAs on serum total bilirubin and NJ. CONCLUSIONS: Altered gut metabolites in neonates with jaundice showed that increased BCAAs and total serum bilirubin were positively correlated. BCAAs proline, methionine, phenylalanine are potential biomarkers of NJ. |
format | Online Article Text |
id | pubmed-9027383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-90273832022-04-28 Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia Zeng, Shujuan Wang, Zhangxing Zhang, Peng Yin, Zhaoqing Huang, Xunbin Tang, Xisheng Shi, Lindong Guo, Kaiping Liu, Ting Wang, Mingbang Qiu, Huixian Comput Struct Biotechnol J Research Article BACKGROUND: The gut microbiota plays an important role in the early stages of human life. Our previous study showed that the abundance of intestinal flora involved in galactose metabolism was altered and correlated with increased serum bilirubin levels in children with jaundice. We conducted the present study to systematically evaluate alterations in the meconium metabolome of neonates with jaundice and search for metabolic markers associated with neonatal jaundice. METHODS: We included 68 neonates with neonatal hyperbilirubinemia, also known as neonatal jaundice (NJ) and 68 matched healthy controls (HC), collected meconium samples from them at birth, and performed metabolomic analysis via liquid chromatography-mass spectrometry. RESULTS: Gut metabolites enabled clearly distinguishing the neonatal jaundice (NJ) and healthy control (HC) groups. We also identified the compositions of the gut metabolites that differed significantly between the NJ and HC groups; these differentially significant metabolites were enriched in aminyl tRNA biosynthesis; pantothenic acid and coenzyme biosynthesis; and the valine, leucine and isoleucine biosynthesis pathways. Gut branched-chain amino acid (BCAA) levels were positively correlated with serum bilirubin levels, and the area under the receiver operating characteristic curve of the random forest classifier model based on BCAAs, proline, methionine, phenylalanine and total bilirubin reached 96.9%, showing good potential for diagnostic applications. Machine learning-based causal inference analysis revealed the causal effect of BCAAs on serum total bilirubin and NJ. CONCLUSIONS: Altered gut metabolites in neonates with jaundice showed that increased BCAAs and total serum bilirubin were positively correlated. BCAAs proline, methionine, phenylalanine are potential biomarkers of NJ. Research Network of Computational and Structural Biotechnology 2022-04-02 /pmc/articles/PMC9027383/ /pubmed/35495115 http://dx.doi.org/10.1016/j.csbj.2022.03.039 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Zeng, Shujuan Wang, Zhangxing Zhang, Peng Yin, Zhaoqing Huang, Xunbin Tang, Xisheng Shi, Lindong Guo, Kaiping Liu, Ting Wang, Mingbang Qiu, Huixian Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia |
title | Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia |
title_full | Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia |
title_fullStr | Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia |
title_full_unstemmed | Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia |
title_short | Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia |
title_sort | machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027383/ https://www.ncbi.nlm.nih.gov/pubmed/35495115 http://dx.doi.org/10.1016/j.csbj.2022.03.039 |
work_keys_str_mv | AT zengshujuan machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT wangzhangxing machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT zhangpeng machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT yinzhaoqing machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT huangxunbin machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT tangxisheng machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT shilindong machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT guokaiping machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT liuting machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT wangmingbang machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia AT qiuhuixian machinelearningapproachidentifiesmeconiummetabolitesaspotentialbiomarkersofneonatalhyperbilirubinemia |