Cargando…
Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
In this paper, we propose an end-to-end deep learning approach to realize channel state information (CSI) feedback and hybrid precoding for millimeter wave massive multiple-input multiple-output systems in the frequency division duplexing mode. Different from conventional approaches that treat the C...
Autores principales: | Sun, Qiang, Zhao, Huan, Wang, Jue, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027403/ https://www.ncbi.nlm.nih.gov/pubmed/35455104 http://dx.doi.org/10.3390/e24040441 |
Ejemplares similares
-
Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems
por: Pavia, João Pedro, et al.
Publicado: (2021) -
Machine Learning-Inspired Hybrid Precoding for mmWave MU-MIMO Systems with Domestic Switch Network
por: Li, Xiang, et al.
Publicado: (2021) -
mmWave massive MIMO: a paradigm for 5G
por: Mumtaz, Shahid, et al.
Publicado: (2016) -
User-Driven Relay Beamforming for mmWave Massive Analog-Relay MIMO
por: Iwabuchi, Masashi, et al.
Publicado: (2023) -
Hybrid massive MIMO precoding in cloud-RAN
por: Le-Ngoc, Tho, et al.
Publicado: (2018)