Cargando…
Galvanotactic Migration of Glioblastoma and Brain Metastases Cells
Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027426/ https://www.ncbi.nlm.nih.gov/pubmed/35455071 http://dx.doi.org/10.3390/life12040580 |
_version_ | 1784691359782797312 |
---|---|
author | Lange, Falko Venus, Jakob Shams Esfand Abady, Daria Porath, Katrin Einsle, Anne Sellmann, Tina Neubert, Valentin Reichart, Gesine Linnebacher, Michael Köhling, Rüdiger Kirschstein, Timo |
author_facet | Lange, Falko Venus, Jakob Shams Esfand Abady, Daria Porath, Katrin Einsle, Anne Sellmann, Tina Neubert, Valentin Reichart, Gesine Linnebacher, Michael Köhling, Rüdiger Kirschstein, Timo |
author_sort | Lange, Falko |
collection | PubMed |
description | Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevent galvanotactic migration. In our study, patient-derived glioblastoma and brain metastases cells were exposed to direct current electrical field conditions. Velocity and direction of migration were estimated. To determine the effects of EGF receptor antagonist afatinib and AKT inhibitor capivasertib, assays of cell proliferation, apoptosis and immunoblot analyses were performed. Both inhibitors attenuated cell proliferation in a dose-dependent manner and induced apoptosis. We found that most of the glioblastoma cells migrated preferentially in an anodal direction, while brain metastases cells were unaffected by direct current stimulations. Afatinib presented only a mild attenuation of galvanotaxis. In contrast, capivasertib abolished the migration of glioblastoma cells without genetic alterations in the PI3K/AKT pathway, but not in cells harboring PTEN mutation. In these cells, an increase in the activation of ERK1/2 may in part substitute the inhibition of the AKT pathway. Overall, our data demonstrate that glioblastoma cells migrate in the electrical field and the PI3K/AKT pathway was found to be highly involved in galvanotaxis. |
format | Online Article Text |
id | pubmed-9027426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90274262022-04-23 Galvanotactic Migration of Glioblastoma and Brain Metastases Cells Lange, Falko Venus, Jakob Shams Esfand Abady, Daria Porath, Katrin Einsle, Anne Sellmann, Tina Neubert, Valentin Reichart, Gesine Linnebacher, Michael Köhling, Rüdiger Kirschstein, Timo Life (Basel) Article Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevent galvanotactic migration. In our study, patient-derived glioblastoma and brain metastases cells were exposed to direct current electrical field conditions. Velocity and direction of migration were estimated. To determine the effects of EGF receptor antagonist afatinib and AKT inhibitor capivasertib, assays of cell proliferation, apoptosis and immunoblot analyses were performed. Both inhibitors attenuated cell proliferation in a dose-dependent manner and induced apoptosis. We found that most of the glioblastoma cells migrated preferentially in an anodal direction, while brain metastases cells were unaffected by direct current stimulations. Afatinib presented only a mild attenuation of galvanotaxis. In contrast, capivasertib abolished the migration of glioblastoma cells without genetic alterations in the PI3K/AKT pathway, but not in cells harboring PTEN mutation. In these cells, an increase in the activation of ERK1/2 may in part substitute the inhibition of the AKT pathway. Overall, our data demonstrate that glioblastoma cells migrate in the electrical field and the PI3K/AKT pathway was found to be highly involved in galvanotaxis. MDPI 2022-04-14 /pmc/articles/PMC9027426/ /pubmed/35455071 http://dx.doi.org/10.3390/life12040580 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lange, Falko Venus, Jakob Shams Esfand Abady, Daria Porath, Katrin Einsle, Anne Sellmann, Tina Neubert, Valentin Reichart, Gesine Linnebacher, Michael Köhling, Rüdiger Kirschstein, Timo Galvanotactic Migration of Glioblastoma and Brain Metastases Cells |
title | Galvanotactic Migration of Glioblastoma and Brain Metastases Cells |
title_full | Galvanotactic Migration of Glioblastoma and Brain Metastases Cells |
title_fullStr | Galvanotactic Migration of Glioblastoma and Brain Metastases Cells |
title_full_unstemmed | Galvanotactic Migration of Glioblastoma and Brain Metastases Cells |
title_short | Galvanotactic Migration of Glioblastoma and Brain Metastases Cells |
title_sort | galvanotactic migration of glioblastoma and brain metastases cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027426/ https://www.ncbi.nlm.nih.gov/pubmed/35455071 http://dx.doi.org/10.3390/life12040580 |
work_keys_str_mv | AT langefalko galvanotacticmigrationofglioblastomaandbrainmetastasescells AT venusjakob galvanotacticmigrationofglioblastomaandbrainmetastasescells AT shamsesfandabadydaria galvanotacticmigrationofglioblastomaandbrainmetastasescells AT porathkatrin galvanotacticmigrationofglioblastomaandbrainmetastasescells AT einsleanne galvanotacticmigrationofglioblastomaandbrainmetastasescells AT sellmanntina galvanotacticmigrationofglioblastomaandbrainmetastasescells AT neubertvalentin galvanotacticmigrationofglioblastomaandbrainmetastasescells AT reichartgesine galvanotacticmigrationofglioblastomaandbrainmetastasescells AT linnebachermichael galvanotacticmigrationofglioblastomaandbrainmetastasescells AT kohlingrudiger galvanotacticmigrationofglioblastomaandbrainmetastasescells AT kirschsteintimo galvanotacticmigrationofglioblastomaandbrainmetastasescells |