Cargando…
Conformational Changes in the BSA-LT4 Complex Induced by the Presence of Vitamins: Spectroscopic Approach and Molecular Docking
Levothyroxine (LT4) is known for its use in various conditions including hypothyroidism. LT4 interaction with serum albumin may be influenced by the presence of vitamins. For this reason, we investigated the effect of vitamin C, vitamin B12, and folic acid on the complex of Bovine Serum Albumin with...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027512/ https://www.ncbi.nlm.nih.gov/pubmed/35457032 http://dx.doi.org/10.3390/ijms23084215 |
Sumario: | Levothyroxine (LT4) is known for its use in various conditions including hypothyroidism. LT4 interaction with serum albumin may be influenced by the presence of vitamins. For this reason, we investigated the effect of vitamin C, vitamin B12, and folic acid on the complex of Bovine Serum Albumin with LT4 (BSA-LT4). UV-Vis spectroscopy was used to monitor the influence of vitamins on the BSA-LT4 complex. Fluorescence spectroscopy revealed a static quenching mechanism of the fluorescence of BSA-LT4 complex by the vitamin C and folic acid and a combined mechanism for vitamin B12. The interaction of vitamin C and folic acid with BSA-LT4 was moderate, while the binding of vitamin B12 was much stronger, extending the storage time of LT4 in blood plasma. Synchronous fluorescence found that the vitamins were closer to the vicinity of Trp than to Tyr and the effect was more pronounced for the binding of vitamin B12. The thermal stability of the BSA-LT4 complex was more evident, but no influence on the stability of BSA-LT4 complex was obtained for vitamin C. Molecular docking studies showed that vitamin C and folic acid bound the same site of the protein, while vitamin B12 bonded to a different site. |
---|